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Abstract. The fluctuation-induced interaction between two rod-like, rigid inclusions in a fluid vesicle is
studied by means of canonical ensemble Monte-Carlo simulations. The vesicle membrane is represented
by a triangulated network of hard spheres. Five rigidly connected hard spheres form rod-like inclusions
that can leap between sites of the triangular network. Their effective interaction potential is computed as
a function of mutual distance and angle of the inclusions. On account of the hard-core potential among
these, the nature of the potential is purely entropic. Special precaution is taken to reduce lattice artifacts
and the influence of finite-size effects due to the spherical geometry. Our results show that the effective
potential is attractive and short-range compared with the rod length L. Its well depth is of the order of
κ/10, where κ is the bending modulus.

PACS. 87.16.-b Subcellular structure and processes – 68.35.Md Surface energy; thermodynamic properties
– 02.70.Lq Monte Carlo and statistical methods

1 Introduction

Lipid membranes are interesting systems in statistical
physics and are the subject of many theoretical and exper-
imental investigations because of the abundance of effects
they exhibit. Often fluid membranes are considered, which
feature the unusual combination of finite bending stiffness
and vanishing in-plane shear stress. This is caused by the
constituent lipid molecules which can be sheared against
each other, but resist bending normal to the plane [1].

Biological membranes also contain inclusions, i.e. im-
purities that differ from lipid molecules chemically and
mechanically. Inclusions are embedded in the membrane
and can diffuse laterally. Examples range from rather
large inclusions such as proteins and polymers to very
small bodies such as so-called gemini comprising two lipid
molecules whose head groups are chemically bonded [2].
In general, any membrane component that deviates in its
mechanical properties from lipid molecules will be called
inclusion. Most of these are rather rigid and thus, the
presence of an inclusion locally stiffens the ambient mem-
brane. Inclusions diffuse within the membrane with typical
speeds of a few microns per second [2].

Forces between membrane inclusions currently re-
ceive considerable interest [3–8]. They can be di-

a Current address: Dept. of Electrical Eng., TRC 201 B, Uni-
versity of Maryland Baltimore County, 1000 Hilltop Circle,
Baltimore MD 21250, USA.
e-mail: holzloehner@umbc.edu

vided into two classes, direct forces due to elec-
trostatic and van der Waals interactions, and indi-
rect forces which are mediated by membrane fluctu-
ations. The latter are of interest here. However, in-
direct fluctuation forces between membrane inclusions
should not be confused with depletion forces [9,10]
(although both are entropic in origin) that exist when
small particles are depleted from the gap between big-
ger ones. Indirect inclusion interactions were investigated
theoretically, both for isotropic (rotationally invariant in
the membrane plane) [3–5,11,12], anisotropic (e.g. rod-
like) inclusions [5,6], and under lateral membrane ten-
sion [8]. The above quoted contributions focus on the
range ξ � s � L, where s is the center-center distance
between two inclusions whose linear, in-plane size is L, see
Figure 1, and ξ is the persistence length, that is the dis-
tance in the membrane over which the correlation of the
surface normals decays [4]. Based upon perturbative ap-
proaches, it was found that there is an (attractive) long-
range interaction potential of the form Φ ∝ −kBT (L/s)4,
both for isotropic [4] and anisotropic [5,6] inclusions (kB

and T are Boltzmann’s constant and temperature, respec-
tively). However, its magnitude was predicted to be much
smaller than kBT over the range of s� L.

Short range attractive interactions (s < L) have been
predicted by Netz [7] who treated the interactions be-
tween stiff inclusions in a membrane analytically. For his
model Netz obtains a logarithmically decaying, attrac-
tive interaction potential whose magnitude increases with
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Fig. 1. Curved membrane with two rod-like surface inclusions
of length L and width ε� L, separated by the center-to-center
distance s. The rods are rotated by the in-plane angles θ1, θ2

against the connection vector. Sketches a) and b) show two
rods in parallel settings. A perpendicular arrangement similar
to c) will be called “T-formation”, a setting such as d) “in-line
formation”.

increasing membrane stiffness (see Sects. 2 and 5). Other
studies dealing with short-range interactions between
membrane inclusions were performed by Dan et al. [13]
and Aranda-Espinoza et al. [14] who considered mem-
brane Hamiltonians with contributions from compression
(expansion), spontaneous curvature of the membrane, and
bending stiffness. These calculations have been carried out
in the limit of vanishing temperature where membrane
fluctuations do no longer exist. Also, s in [13,14] is typi-
cally of the order of the membrane thickness, whereas the
papers [4–6] assume a thickness much smaller than s.

The present paper is also concerned with short-range
interactions but between rod-like inclusions for s ≈ L em-
bedded in the surface of a vesicle. Throughout this paper
we are exclusively concerned with the case of zero sponta-
neous curvature. To the best of our knowledge, numerical
simulations for three-dimensional fluctuating membranes
with finite bending stiffness and inclusions, which are con-
sidered here, have not yet been carried out.

The remainder of this paper is organized as follows.
Model and simulation algorithm are detailed in Section 2.
In Section 3, pair distribution functions are introduced.
Details of their numerical determination are presented
in Section 4. Section 5 is devoted to a presentation of
the results obtained in this work. The paper concludes in
Section 6 with a summary and discussion.

2 The model

The approximations employed in [4–6] are only valid in the
range s � L and break down for the interesting case of
s ≈ L. Also, the membrane can no longer be regarded as a
continuous surface, as the discrete lipid network becomes
more and more influential. Hence, numerical simulations
are required to obtain quantitative results. In this regard
the Monte-Carlo method provides a particularly powerful
technique by which thermophysical properties of equilib-

rium systems can be computed in a rather simple and
straightforward manner [15].

The model membrane consists of N hard spheres of
diameter a, connected by rigid bonds (tethers) of length r
with a ≤ r ≤

√
3a. This model has been employed previ-

ously [16–19]. Membrane fluidity is realized by the bond-
flip algorithm first proposed in [20]. On a closed triangular
network, each bond can be regarded as one of the diago-
nals in the quadrilateral formed by the four surrounding
bonds. The bond-flip algorithm rotates the bond within
this quadrilateral, so that it represents the other diag-
onal after the operation. This method allows for vertex
diffusion, as any triangulation can be transformed into
any other [20]. The bending energy is computed from the
Helfrich Hamiltonian [21] by integrating over the surface S

H =
∫

dS
(κ

2
H2 + κ̄K

)
, (1)

where H ≡ c1 + c2 is the sum of the principal curvatures
on the surface, K ≡ c1 c2 the Gaussian curvature, and κ, κ̄
are, respectively, the bending modulus and the Gaussian
modulus. The term

∫
dS K is constant in fixed surface

topology due to the Gauß-Bonnet theorem [21]. The term∫
dS H2 is discretized as in [17],

κ

2

∫
dS H2 ≈ 4π κ+

√
3κ

NB∑
i=1

(
1− n4an4b

)
, (2)

where the sum runs over all NB = 3(N − 2) bonds in the
network. Each bond has two adjacent triangles 4a(i) and
4b(i), whose outer unit normals are denoted by n4a and
n4b .

The simulation algorithm consists of two independent
parts. The first one follows the one described in [17]. One
Monte-Carlo step (MCS) consists of attempting to move
N randomly selected vertices to new positions within a
cube [−ρ, ρ]3, centered at their current positions. Next,
N bonds are selected and attempted to be flipped. Both
processes are accepted or rejected on the basis of their
associated change in energy according to the Metropolis
algorithm [22].

In addition, mobile, rod-like inclusions are embedded
in the membrane. They consist of five rigidly connected
hard spheres. None of the spheres in this “frozen” rod-like
configuration can be moved independently, nor can the
four inner bonds be flipped. A rod and its ambient mem-
brane are thus similar to a spine in which some of the ver-
tebrates are fused. Their biological equivalent would come
closest to (multi-)gemini, since the inclusion constituents
are equal to those of the plain membrane.

The inclusions can move as an entity, thereby resem-
bling lateral diffusion. This is accomplished by the “rod-
leap” algorithm, described below, which is carried out in
the second step of the simulation. A new set of five ver-
tices is selected, which may overlap with the old one. To
find the new vertices, a random vertex next to the old
rod is selected and the four remaining vertices are chosen
along the direction of a random unit tangential vector û.
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P1

û

Fig. 2. Portion of a triangular network of hard spheres with
two inclusions, consisting of five vertices each. To the ambi-
ent membrane, vertices and bonds within inclusions appear
“frozen” and cannot be moved (or flipped) by an MC-step. An
inclusion can leap as an entity (arrow) by releasing the old ver-
tices and freezing a new set (bold circles), after having moved

the vertices. eP1 is the position of the selected vertex from which
the new rod is tried to be placed along the tangential direction
û, see text.

Subsequent vertices in the rod must be connected by a
bond, as shown in Figure 2. Then a Monte-Carlo move
is attempted to simultaneously move the last four of the
new vertices to the new positions

P̃n = P̃1 + (û ·Pn) û, (3)

where P̃1 = P1 is the position of the selected vertex and
the Pn, (n = 1 . . . 5) are the old vertex positions. The ori-
entation of the local tangential plane next to P1 is found
by averaging all the neighboring triangle normals.

The effect of placing a rod somewhere is to flatten the
membrane locally. Note that this does not affect the sur-
face topology. No holes or contact angles at the membrane-
inclusion boundary are introduced and hence the Gauß-
Bonnet theorem remains valid. If finite contact angles are
assumed [8,12], the number of the inclusions must be kept
constant, whereas in the present case the Gauß-Bonnet
theorem would remain valid even if the number of inclu-
sions were varied. This flattening effect quenches fluctua-
tions normal to surface of the vesicle. On the other hand,
inclusions hardly increase the net bending energy of the
ground state vesicle (sphere) of E0 = 8πκ [17]. Figure 3
shows a snapshot of a simulation with N = 1012 vertices.

The total number of vesicle vertices N and number of
rodsNR must be carefully chosen to ensure that the vesicle
is not too strongly perturbed by the rods. Also, the impact
of multi-body effects among the rods is crucial for the
reliability of the simulations. The rods on the membrane
can be considered a lattice gas that should be as dilute
as possible. In the present simulation, NR = 4 rods were
placed on a vesicle of N = 1012 vertices. With this choice,
only 2% of the vertices are occupied by inclusions. The
average rod length of L = 4 〈r〉, where 〈r〉 ≈ a(1 +

√
3)/2

is the mean bond length, is only about half as long as the
average vesicle radius of gyration that is computed to be

Fig. 3. Simulation snapshot of a vesicle with N = 1012 vertices
and κ/kBT = 7.5. The shades on the surface may be thought
of as reflections from a spotlight. Two inclusions with their
incorporated spheres are visible on the membrane.

〈Rg〉 = 8.13 〈r〉 for κ/kBT = 7.5. An alternative measure
of coverage of the membrane by inclusions is obtained by
assigning a disk of size AL = π (L/2)2 to each rod. The
total area covered by the disks NRAL/ 〈A〉 is about 6%
of the average vesicle surface area (〈A〉 ≈ 841 〈r〉2). Thus,
we conclude that with the above choice of constants, the
vesicle is not strongly perturbed by the inclusions and
many-body effects are expected to be negligible (see also
below).

Thermal fluctuations induce a finite effective surface
tension τ in fluid membranes. Therefore, in principle τ in-
troduces an additional length scale. However, this tension
was estimated as τ ≈ kBTξ

−2 [23] and thus is very small
in the regime that is of interest here. In the case of biolog-
ical membranes, experiments show [24] that the effective
surface tension is negligibly small.

3 Pair distribution functions

The goal of the present work is the computation of the
fluctuation-induced interaction potential of the inclusions
ΦRR(s, θ1, θ2, κ). The total energy of a given triangulation
TN , as given by (1, 2), depends on the positions of the
vertices X1 . . .XN and on the N × N connectivity (ad-
jacency) matrix S, where Sij = 1 if vertices i and j are
connected by a bond and zero otherwise. The partition
function can then be written as [18]

Z =
∫

dTNexp
(
−β(H[TN ] + Ubond)

)
=
∑

S

∫ ( N∏
i=1

dXi

)
exp
(
−β(H[TN ] + Ubond)

)
. (4)

Here, Ubond is introduced as a constraint imposed on
the bonds between neighboring hard spheres forming the
membrane. It is zero if all bond lengths ri are in the range
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a ≤ ri ≤
√

3a and infinite otherwise. In our model, the
only effect of adding inclusions to the membrane is to
prohibit certain triangulations that do not adhere to the
conditions described in the preceding section. In (4), this
can be accounted for by extending the definition of Ubond

so that it diverges also if TN cannot accommodate the NR

inclusions.
Triangulations can be transformed into each other by

means of the bond-flip algorithm and thus no vertex is
different from the others. Consequently, the average en-
ergy of a triangulation with, say, two inclusions only de-
pends on their mutual distance s and angles θ1, θ2, see
Figure 1. This is the basic assumption of the present work.
Strictly speaking, the distance s is the length of the short-
est geodesic on the surface that connects the centers of the
two inclusions. For s� ξ, however, the Euclidean distance
can be taken. The inclusion interaction is purely entropic
and not a result of direct molecular interaction. However,
an effective interaction potential ΦRR(s, θ1, θ2, κ) can be
defined as a potential of mean force (PMF) [25] by the
relation

ΦRR + Φma = −kBT ln g(2), (5)

where Φma is the mutual avoidance potential of the rods
and g(2) = g(2)

(
s, θ1, θ2, κ

)
is the pair distribution func-

tion of the inclusions on the triangulation.
The potential ΦRR was calculated analytically in [6]

for the range ξ � s � L. Surprisingly, the result de-
pends on the sum of the angles θ1 + θ2 between the rods
and the connecting vector. However, θ1 + θ2 is the same
for the T-formation (Fig. 1c) and, for example, the case
θ1 = θ2 = 45◦ (Fig. 1b). For small distances s < L that
are mainly considered in this article, the latter case is es-
sentially a parallel side-by-side position, and thus parallel
and perpendicular relative orientations (Figs. 1a and 1c)
would be indistinguishable. For this reason, the angle dif-
ference θ := |θ1 − θ2| is a better variable here for s ≈ L.
On the other hand, one has to take into account that for
s ≥ L, the parallel side-by-side position and e.g. the in-line
positions (Figs. 1a and 1d) are then indistinguishable.

4 Numerical details

We approximate g(2) by a histogram g
(2)
ij . To do so, a rod

pair histogram nij of 25× 25 entries is generated. After
regular intervals during the Monte-Carlo simulation, all
NR(NR − 1)/2 pairs of the NR rods are considered. If
s ≤ smax, where smax is a cut-off distance small compared
to 〈Rg〉, nij is incremented by one. Here, the indices i
and j are rounded to the closest integer i ' 25 s/smax

and j ' 25 θ/(π/2) (rods are head-tail symmetrical). For
smax, a length of 1.5L is used. The relationship between
nij and g(2)

ij is

g
(2)
ij =

nij
ntot

〈A〉
〈Ai〉

, (6)

which is valid for s ≤ smax. Here, ntot is the total number
of pairs of rods considered (some of which with s > smax

and thus ntot ≥
∑
i,j nij), and 〈Ai〉 is the average surface

area of a strip on the vesicle with s ∈ [i, i+ 1]smax/25,
analogous to the area between two parallels on the globe.
The pair distribution function g(2) is unity for a uniform
inclusion distribution on an exactly spherical vesicle. How-
ever,

a) the vesicle shape deviates from the sphere especially
for small κ.

b) Since inclusions are bound to vertices, “quantization”
effects in the density can be expected if s becomes
comparable to 〈r〉.

c) In addition, a peak in g(2) for s ≈ a (the smallest possi-
ble distance) can be expected for the following reason:
an inclusion straightens a row of vertices, thereby forc-
ing its vicinity to remain closer to the perfect, flat and
evenly spaced lattice. Trial moves that consist in plac-
ing a rod parallel to an existing one might be less likely
to violate a bond length condition because the lattice
is more uniform there (closer to the regular hexagonal
lattice).

Effects b) and c) are typical lattice artifacts and therefore
unphysical. They are eliminated by the procedure outlined
below.

We are only interested in the variation in g(2) caused
by the increased probability of placing inclusions close to
each other, for the membrane there is less corrugated nor-
mal to the plane than on average. In order to remove arti-
facts a-c, normalization runs are performed, according to
the following prescription. The rod-leap MC step conforms
in all details to the prescription described in the last sec-
tion, except that before the bending energies of the new
and previous rod positions are compared, the new vertices
are moved back to their original positions. In other words,
in the normalization run, each trial move is accepted if
no bonds would be broken in moving the vertices to the
positions P̃n, but since vertices are never actually moved
there, the lattice remains unchanged. This yields a nor-
malization histogram ñij and analogous to (6) a pair dis-
tribution function g̃(2). As a consequence, the moves in
the normalization runs share all three types of artifacts
a-c, but are insensitive to differences in bending energy.
This allows to compute ΦRR(s, θ) by

ΦRR, ij

kBT
= − ln

g
(2)
ij

g̃
(2)
ij

= − ln
nij ñtot

ñij ntot
· (7)

Inclusions cannot overlap with others which implies a
mutual avoidance condition of sin θ > 2s/L as shown in
Figure 4. Also, the center-center distance cannot be
smaller than a hard sphere diameter, s ≥ a. The mu-
tual avoidance potential Φma from (5) is infinite in these
regions and zero elsewhere.

Depletion effects [9,10] play no role in the present sim-
ulation, since the lipids (free vertices) as the “small parti-
cles” in the membrane network always retain their uniform
density.
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Fig. 4. If two idealized rods A and B have a center-center
distance PA PB = s of less than L, the usual accessible rota-
tional angle of rod B around its center PB of π is reduced to
π − α = βa + βb.
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Fig. 5. Plot of −ΦRR(s, θ) for N = 1012 and κ/kBT = 7.5.
The plateau on the left side with the shape of the letter “h” is
the mutual avoidance area described in Section 3; ΦRR(s, θ) is
not defined there and Φma diverges. The peak in the back cor-
responds to the interactive interaction of parallel side-by-side
rod pairs, the slight dip in front to rods in the “T-formation”.

5 Results

A set of simulation runs is performed with different values
for the bending stiffness coefficient κ. For each simulation,
a normalization run is performed according to the pre-
scription outlined above. The simulation length is 108 MC-
steps. Figure 5 shows−ΦRR, ij(s, θ) for κ/kBT = 7.5. The
rows in the back of the histogram (θ → 0) refer to rod
pairs in parallel position; for small s, this must be a side-
by-side arrangement (Figs. 1a and 1b). For s/L ≥ 1, rod
pairs in the in-line formation (Fig. 1d) also contribute to
the average. The front rows in the diagram (θ→ 90◦) re-
fer to rods in the T-formation, which is slightly repulsive
for very small s. This means that a close, perpendicular
position reduces membrane fluctuations most efficiently.

In order to find out about the impact of many-body
effects, the fraction of entries nij stemming from isolated
pairs of inclusions to those entries corresponding to clus-
ters of three or more inclusions is calculated. An isolated
pair is defined as a pair of inclusions with s ≤ smax in the
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Fig. 6. a) Plot of −ΦRR(s, θ = 0); the graph for κ/kBT = 7.5
(+) corresponds to the slice from Figure 5 along s at θ = 0. The
distance between two tics on the abscissa equals one mean bond
length 〈r〉 (L = 4 〈r〉). The vertical dashed line at s/L = a/L =
0.183 marks the smallest possible bond length. b) as a) but for
κ/kBT = 11.0 together with a fit of a1 ln(1− exp(−a2s/L)),
(a1 = 7.5, a2 = 6.6) following the theory of Netz [7].

absence of other rods which are closer than smax to either
of the two. About 91% of the entries in nij stem from iso-
lated pairs. Many-body effects are thus negligible in the
present simulation as far as the attractive well of the po-
tential is concerned. These results therefore confirm the
conjecture stated at the end of Section 2.

In Figure 6a, −ΦRR(s, θ = 0) is shown for κ/kBT =
2.0, 7.5, and 11.0. The decay is very rapid with ΦRR

vanishing approximately at s/L ≈ 0.6 within the pre-
cision of the simulation. At s/L = 0.75 = 3 〈r〉 and
s/L = 1.0 = 4 〈r〉, remnants of the lattice periodicity in-
duce small peaks in the graphs. The figure shows that ΦRR

is attractive for small distances s < L, but short-range.
Netz [7] found ΦRR(s) to decay logarithmically. A fit with
a logarithmic function of the type given in [7] is shown in
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Fig. 7. Plot of max(−ΦRR(s, θ = 0)) for different bending
moduli κ. Inclusions on stiffer membranes feel a more at-
tractive potential, the relationship is roughly linear with
max(−ΦRR(s, 0)) ≈ κ/10.

Figure 6b1. In addition to the short-range attraction there
might also be a long-range component. In [6] kBT/128 was
estimated for the magnitude of the leading term of long-
range attraction in the effective potential between rodlike
inclusions. This value is less than the statistical error of
our data in the limit of larger s (see Fig. 6).

Consequently, our data do not permit us to
comment on long-range effective interactions between
inclusions. It is, however, noteworthy, that due to the com-
putational method of a perturbative treatment in terms of
inverse powers of s, the results of [4,6] cannot rule out the
existence of short-range attractions consistent with the
present findings. The results in [7], on the other hand, are
exact and remain valid in the strong-coupling limit.

The larger κ, the more attractive becomes the interac-
tion. Figure 7 shows that this relationship is almost linear,
with roughly max(−ΦRR(s, θ = 0)) ≈ κ/10.

In other words, the effective attractive interaction be-
tween a pair of inclusions becomes stronger the stiffer
the membrane of the vesicle is. This may seem contra-
dictory because the stiffer the membrane the more sup-
pressed are fluctuations of the membrane. However, we
notice from the work of Netz [7] that short-range inter-
actions between a pair of inclusions may be expected to
depend logarithmically on the ratio s/ξ for s/ξ � 1. A
fit of the functional form for ΦRR(s) proposed by Netz
to our data shows that the latter are consistent with a
logarithmic decay of the effective potential (see Fig. 6b).
The correlation length ξ, on the other hand, increases
with κ as ξ ∝ exp(4πκ/(3kBT )) [18]. Thus, combining the
logarithmic decay of ΦRR with the latter expressions leads
to a linear increase of−ΦRR with κ for fixed s and T which
is consistent with the plot in Figure 7.

1 This refers to inclusions with a quadratic term in the per-
turbation Hamiltonian [7].

6 Discussion and conclusions

The present article discusses Monte-Carlo simulations for
closed, triangulated membranes with mobile, rod-like in-
clusions as an extension of a widely used model [16–19].
Inclusions locally straighten the network, thereby quench-
ing lateral fluctuations. The effective interaction potential
is attractive and short-range (see Fig. 6). For s→ 0, it is
limited by the mutual avoidance condition (Figs. 4 and 5).

The contribution of this simulation lies in the focus
on small inclusion separations. We find an attractive in-
teraction potential of the order of kBT between rods that
consist of five rigidly connected hard spheres, for bend-
ing coefficients of κ/kBT of the order of 1−10 (Fig. 6).
Furthermore, the magnitude of the well depth of the po-
tential grows almost linearly with κ, as shown in Figure 7.
All of the results presented in this paper are valid in the
dilute inclusion limit. The form of the function ΦRR and
its magnitude can be expected to change with higher den-
sities. For very high inclusion densities, segregated phases
might exist, one of them largely depleted of inclusions and
another, dense phase with a nematic order due to the in-
clusion anisotropy.

In conclusion, these results have implications for
the formation of inclusion clusters. Such aggregation is
frequently observed experimentally [26] and in simula-
tion [27]. A number of different driving mechanisms have
been proposed, aside from those induced by direct inter-
action or depletion forces [9,10]. This includes sponta-
neous curvature [11], lateral tension [3,8], and conical in-
clusion shapes [3,8,12]. Fluctuation-induced interactions
as considered in [4–6] focus on the large-separation limit
s/L� 1 and result in interaction potentials ΦRR � kBT .
Although this is of great theoretical interest as it draws an
analogy to the quantum-mechanical Casimir effect [28,29],
interaction energies far smaller than kBT are of little prac-
tical relevance in thermodynamic systems. The present
work, in contrast, allows to gain insight into the strongly
perturbed, short length-scale region, over distances com-
parable to both the inclusion length and the lipid head
size. This is the crucial length scale in chemical and bio-
logical applications.
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